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Abstract
The Miura-ori is a classic flat-foldable tessellation which has its root in origami, but has been
applied to the folding of reconfigurable structures for a variety of engineering and architectural
applications. In recent years, researchers have introduced design variations on the Miura-ori
which change both the form and the function of the pattern. This paper introduces the family of
isomorphically generalized symmetric variations of the Miura-ori. We study the Miura crease
pattern as a wallpaper pattern. We reduce the symmetry of the original crease pattern to design
new patterns while at the same time preserving the symmetry group of the tessellation as well as
the flat-foldability condition at each node. It will be shown that—through appropriate design
variations on the original pattern—we are able to use the Miura-ori to design either globally
planar, or globally curved, flat-foldable patterns.

Keywords: origami, the Miura-ori, flat-foldability, symmetry, wallpaper groups

(Some figures may appear in colour only in the online journal)

1. Introduction

The Miura fold pattern, or the Miura-ori [1], is a flat-foldable
origami tessellation with various engineering and archi-
tectural applications. From a symmetry standpoint, the Miura-
ori is a tessellation with pmg symmetry (in the international
notation [2]), which is one of the seventeen plane symmetry
groups or wallpaper groups. It has been shown (see, e.g., [3])
that there are exactly seventeen distinct wallpaper groups.
Every wallpaper pattern has a finite region called a unit cell
which repeats under the action of two linearly independent
translations. Each group has a unique unit cell which includes
a certain number of symmetry elements, placed in certain
positions relative to the unit cell. The symmetry elements
include centres of rotation, axes of reflection, and axes of
glide reflection. Schattschneider [4] presents the international
notation for the seventeen plane symmetry groups. Two
wallpaper patterns are said to be isomorphic if they belong to
the same symmetry group, although they may have different
unit cells.

Various scholars have presented design variations on the
Miura-ori which change both the form and the function of the
pattern (see, e.g., [5] or [6]). The authors of this paper have

already developed a framework for the symmetric general-
ization of the Miura-ori [7]. In this paper, we briefly present
the basic concepts and definitions underlying the framework
which are necessary to understand the design process of the
isomorphic descendants of the Miura-ori. In the framework
there are two general assumptions that we use throughout this
study. Firstly, we consider a crease pattern to be a set of
directionless creases. In other words, the fold direction or
mountain-valley assignment of fold lines does not affect the
symmetry of a pattern. Secondly, two crease patterns are
considered to be similar if a uniform scaling or rigid motion
of one of them can make it coincide with the other one. A
variation on a given Miura fold pattern is considered to be a
legitimate variation if the following requirements are met: (1)
all facets remain convex quadrilaterals; (2) the global zigzag
condition (see [7] for an explanation of this concept) of the
pattern is preserved.

There are two different choices for the unit cell which
both match the standard pmg unit cell used in the Interna-
tional Tables for Crystallography [2], as depicted in figure 1.
We primarily use the unit cell shown on the top of the figure
along with its axes, throughout this work. We call this the
primary standard choice for the smallest unit cell of the
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Miura-ori. However, in order to cover a wider range of var-
iations, it is necessary to consider an alternative standard
choice for the smallest unit cell of the Miura-ori, which is
marked by a ‘+’ symbol. The blue shaded area shows the
fundamental region of the pattern. A fundamental region is a
minimal part of a pattern that generates the entire pattern
under the action of all the symmetry operators which exist in
the pattern [8]. Different colours for a symmetry element
represent different classes of that element in the pattern. Note
that the entire pattern can be generated from a unit cell by
only translations. The translation vectors of the pattern in the
x- and y-directions are shown as a and b, respectively. For a
typical Miura-ori crease pattern shown in figure 1, the
‘starting parallelogram’ of the pattern, P, from which the
entire pattern can be generated by symmetry operations,
is shaded in green. It has an acute angle α, and two side
lengths b and l, where b is along the horizontal lines of
the pattern, i.e. along the y-direction. We define a unit

fragment of a repetitive mesh to be a collection of adjacent
facets which generate the entire pattern using the translation
vectors of the pattern. The unit fragment of the Miura
fold pattern, as depicted on the bottom left of figure 1,
consists of a pair of starting parallelograms which share a
fold line on the horizontal lines of the pattern, i.e. along the
y-direction.

The unit cell of a repetitive mesh can be recomposed to
obtain its unit fragment [7]. From figure 2 we can see that the
smallest unit cell of the Miura-ori contains two parallelo-
grams. The left hand section of this figure shows how to move
the triangular fragments (bordered by bold lines) formed by
the crease lines and the borders of the unit cell to obtain the
figure in the middle; it is then sufficient to translate the bor-
dered parallelogram on the bottom of the middle figure in the
opposite x-direction to form two complete parallelograms. We
use this recomposition process to find out the number of
quadrilaterals within the unit cell of a crease pattern
throughout this study.

The recomposition process gives us the number of quad-
rilaterals ‘in each direction’ in the unit cell of a pattern. As
figure 2 shows, the smallest unit cell for the Miura-ori contains
two parallelograms in the x-direction and one parallelogram in
the y-direction. We call this crease pattern a pmg2,1 pattern. We
classify the crease patterns obtained by applying variations on
the Miura fold pattern using the following definition:

Definition 1. A repetitive convex quadrilateral mesh designed
by displacing the nodes of the Miura fold pattern is called Gi,j,
where G is the name of its maximal plane symmetry group,
and i and j are the number of quadrilaterals in the x- and y-
directions, respectively, within the unit cell of the pattern. The
y-direction is the direction of the parallel fold lines in the
Miura fold pattern before applying variations. Variations of
the Miura-ori which can only be designed based on the
alternative unit cell (shown in figure 1) are denoted by G+

i,j.

The Miura fold pattern consists of only one node type
which is flat-foldable for any fold angle α0 (α0≠ 0 or π). We
call this node type a mirror node. A degree-4 node which is
not a mirror node is called a generic node. Figure 3 shows a
(flat-foldable) mirror node versus a flat-foldable generic node
(note that opposite angles must sum to π in order for a node to
be flat-foldable [9]).

In the next section, we study the isomorphic symmetric
variations of the Miura-ori.

Figure 1. Two standard choices for the smallest pmg unit cell for the
Miura-ori. Double and dashed lines represent reflection and glide
reflection axes, respectively. 2-fold axes are shown by rhombuses.
The blue shaded area shows the fundamental region of the pattern.
The starting parallelogram of the pattern is shaded in green. The unit
fragment of the pattern consists of a pair of starting parallelograms,
as depicted on the bottom left of the figure.

Figure 2. Recomposition of the Miura-ori unit cell to form its unit
fragment.

Figure 3. A (flat-foldable) mirror node versus a flat-foldable
generic node.
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Figure 4. From left to right, the unit cells for pmg2,1, pmg6,1, and pmg2,2.

Figure 5. The unit cell of a pmg pattern in three different states. State S0: the smallest unit cell C0 based on a rectangular lattice of points. State
S′0: an enlarged unit cell, according to the scheme introduced earlier, based on the same lattice of points as in State S0. State S′: a unit cell
with the same number of tiles in each direction as in State S′0, but with a different height for the tile. It is based on a different rectangular
lattice of points shown in red.
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2. Isomorphic variations of the Miura-ori

Consider a pmg unit cell with lattice translation vectors a
and b. According to the International Tables for Crystal-
lography [2], the maximal isomorphic subgroup
for this group has a unit cell with a′= 3a, or alternatively, a
unit cell with b′= 2b. For a Miura fold pattern, these unit
cells which are called pmg6,1 and pmg2,2 respectively, are

depicted in figure 4 alongside the smallest possible unit cell,
pmg2,1.

A unit cell with a′ =ma defines an isomorphic subgroup
of the initial unit cell provided that m is an odd number, while
a unit cell with b′= nb defines an isomorphic subgroup of the
initial unit cell for any natural number n [2]. According to the
discussion above, the symmetry group pmg allows us to
expand the initial pmg2,1 unit cell to a larger one of the form
pmg(4i−2),j, where i and j are natural numbers. Knowing this
pattern for the growth of the unit cell, our goal is to investi-
gate the possibility of preserving the flat-foldability condition
of a crease pattern while enlarging its unit cell.

The unit cell variation scheme is illustrated in figure 5.
State S0 in this figure shows the rectangular lattice of
points associated with a pmg wallpaper pattern, a Miura fold
pattern in our case. It should be noted that these lattice
points are different from the nodes (vertices) of the fold
pattern. The yellow shaded rectangle is the smallest unit cell
of the pattern, C0, which is also called a tile T0. It has a height
a0 and a width b0. The aspect ratio of the unit cell can be
expressed as:

a
a

b
¯ . (1)0

0

0
=

State S0′ shows the enlarged unit cell according to the
enlargement scheme introduced earlier, while preserving the

Figure 6. Unit cell growth scheme for isomorphic variations on the
Miura-ori; the three minimal variations are highlighted in blue.

Figure 7. Upper unit cell: pmg+2,5; lower unit cell: pmg2,5.
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same lattice of points. In fact, the transformation of the unit
cell from C0 to C0′ is a non-uniform scaling of C0 with scale
factors p2 1− and n in the x- and y-directions, respectively,
where p and n are natural numbers.

After choosing a larger unit cell, C ,0′ we have a degree of
freedom for changing the aspect ratio of the starting tile
of the pattern, while retaining the same number of tiles in
each direction. Without loss of generality, we can assume

that the width of the unit cell remains unchanged, i.e.:
b b .0= For States S0′ and S′ we have: b b nb.0′ = ′ = The
aspect ratio of the unit cell for State S0′ is defined as
follows:

a
a

b

p a

nb

p

n
a¯

(2 1) 2 1
¯ . (2)0

0

0

0
0′ =

′
′

=
−

= −

Figure 8. Simulation of the folding process of the pmg2,5 pattern shown in the previous figure, using the Freeform Origami software [11].
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Similarly, the aspect ratio of a variation of the Miura-ori,
State S ,′ is defined as following:

a
a

b

r a

r b

r

r

p

n
a¯

2 1
¯ , (3)x

y

x

y

0

0
0′ = ′

′
=

′
′

= −

where rx and ry are scale factors in the x- and y-directions,
respectively. As we have already assumed that we do not
change the width of the enlarged unit cell, i.e. r 1,y = the
relative aspect ratio of a variation of the Miura-ori to an
initial Miura pattern with an aspect ratio ā0 can be expressed
as:

a

a

p

n
r

¯

¯

2 1
, (4)

S S

x

S S
0

0 0

0

⎜ ⎟⎛
⎝

⎞
⎠

   ⏟
′ = − ×

→ ′
′→ ′

where the first term of the product is the scale factor for the
transformation from State S0 to State S ,0′ and the second
term is the scale factor for the transformation from State S0′ to
State S .′ The scale factor for the initial enlargement of
the unit cell depends on the size of the unit cell which we
choose on the original pattern on which we are making
variations, and the second term of the product describes
how to scale the height of the enlarged unit cell while
preserving its width. The height of the final unit cell is as
follows:

a r p a b(2 1) ¯ . (5)x 0′ = −

Figure 6 shows the unit cell growth scheme for iso-
morphic variations on the Miura-ori, where the three minimal
variations are highlighted in blue. In the next section, we
study the minimal isomorphic variations of the Miura-ori.
Then we will investigate the problem for the isomorphically
generalized case.

It can be shown that for a Gi,j variation of the Miura-ori,
if j is odd, Gi,j and G+

i,j are the same, but if j is even, they are
different patterns. This fact is revealed through an example

pattern depicted in figure 7 [10]. In this figure, the pattern is
generated by making variations on a pmg+2,5 unit cell, shown
in the upper part of the figure. This can also be generated
based on the pmg2,5 unit cell shown in the lower part of the
figure. Therefore, pmg2,5 and pmg+2,5 are the same pattern. A
computer simulation of the folding process of this pattern
using the Freeform Origami software [11] is depicted in
figure 8.

2.1. Minimal isomorphic symmetric variations

The two variations pmg6,1 and pmg2,2 are the minimal iso-
morphic variations of the Miura-ori in the x- and y-direc-
tions, respectively. pmg6,2 is the first variation in which the
unit cell has enlarged in both x- and y-directions in com-
parison to the smallest unit cell for the Miura-ori. In this
sense, it is the minimally generalized variation of the Miura-
ori in two directions. The derivations of the minimal varia-
tions of the Miura-ori have been presented in [12]. To avoid
duplication, we refrain from repeating them in this paper.
Here, as an example, we present the derivation of a novel
pattern. Starting from the alternative standard unit cell, S+,
illustrated in figure 1, we can design a 6 × 2 isomorphic
variation of the Miura-ori, pmg+

6,2, which is different from
pmg6,2. A pmg+6,2 unit cell is illustrated in figure 9. There are
four distinct orbits of nodes associated with the unit cell,
shown as A, B, C and D (the position of every node in an
orbit is defined by symmetry operations from the position of
any one node within the orbit). As we are working with a
pmg group, we have a degree of freedom for the aspect ratio
of the unit cell. There are two degrees of freedom associated
with the position of each of the two nodes A and B. Also
there is one degree of freedom to move each of the nodes C
and D along the mirror line—it is not, however, possible to
move any of them in the x-direction within a fixed unit cell,
as the reflection line restrains movements in this direction to
retain the symmetry.

Figure 10 shows a Miura fold pattern in its original
configuration, State (0); in the lower part of the figure,
we have perturbed the pattern using all the degrees of
freedom that we introduced earlier to obtain a new config-
uration, State (1). Note that State (1) is not flat-foldable in
general; we present a flat-foldable variation of it later in this
section.

In order to investigate the application of the flat-fold-
ability condition to the pattern at nodes A and B, we have
illustrated the fundamental region of a typical pmg+6,2 varia-
tion of the Miura-ori accompanied by its surrounding fold
lines in figure 11. Indices l and r represent the neighbouring
fundamental regions on the left and right side of the blue
shaded fundamental region, respectively.

Applying the flat-foldability constraint at nodes A and B,
respectively, we get:

, (6)2γ π α= −

. (7)3γ α=

Figure 9. From a symmetry point of view, a pmg+6,2 unit cell contains
four distinct orbits of nodes, shown as A, B, C and D.
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From the two above equations we obtain:

, (8)2 3γ γ π+ =

which implies that the two line segments AC and BD are
parallel. Therefore, all transverse polylines in a flat-foldable

pmg+6,2 variation of the Miura-ori must be piecewise parallel.
In other words, all flat-foldable pmg+6,2 variations of the
Miura-ori are globally planar (in contrast, we have shown that
[12] the flat-foldable pmg6,2 variations of the Miura-ori can be
either globally planar, or globally curved. A simulation of the

Figure 10. A pmg+6,2 variation of the Miura-ori. State (0): a given Miura fold pattern. State (1): a perturbed state using all degrees of freedom.
State (1) is not flat-foldable in general; we present a flat-foldable variation of it later in this section.
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folding process of an example fold pattern [12] for the
globally curved pmg6,2 variations of the Miura-ori is depicted
in figure 12). From the flat-foldability condition at nodes A
and B we can also write:

, (9)1γ β=

. (10)4λ π β= −

From equations (6), (7), (9) and (10) we conclude that the
two nodes A and B are geometrically congruent, i.e. A B.≅
There is a similar relationship between nodes C and D, i.e.
C D≅ .

Figure 11. The fundamental region of a typical pmg+6,2 variation of
the Miura-ori along with its surrounding crease lines. Indices l and r
represent the neighbouring fundamental regions on the left and right
side of the blue shaded fundamental region, respectively.

Figure 12. Simulation of the folding process of a globally curved pmg6,2 variation of the Miura-ori using the Freeform Origami software [11].

Figure 13. An example for a flat-foldable pmg+6,2 variation of the Miura-ori. It consists of two different starting parallelograms, shown as P1

and P2, as well as two different starting trapezoids, shown as T1 and T2 solid lines show mountain fold lines, while dashed lines represent
valley fold lines.
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Figure 13 shows an example for a flat-foldable pmg+6,2 var-
iation of the Miura fold pattern alongside the assigned mountains
and valleys. The pattern consists of two different starting paral-
lelograms, shown as P1 and P2, as well as two different starting
trapezoids, shown as T1 and T2. Figure 14 shows a cardboard
model of the fold pattern depicted in figure 13.

2.2. Generalized isomorphic symmetric variations

The generalization of the Miura-ori in both longitudinal and
transverse directions simultaneously has the general form
pmgm,n, where m p2(2 1),= − and n and p are natural
numbers. Depending on whether n is odd or even, the centre

Figure 14. A cardboard model of the fold pattern depicted in the previous figure in a partially folded condition (left) and the flat-folded
condition (right).

Figure 15. An example for a flat-foldable pmg6,3 variation of the Miura-ori. It consists of four different starting convex quadrilaterals,
shown as Q1, Q2, Q3 and Q4, as well as a single parallelogram. Solid lines show mountain fold lines, while dashed lines represent valley fold
lines.
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of the unit cell is located on the midpoint of a side of a
parallelogram facet, or on the centroid of it. The two different
types of pmgm,n unit cells depending on whether n is even, i.e.
n= 2q, or odd, i.e. n = 2q− 1, where q is a natural number, are

presented in [10]. In either case, there are n× p distinct orbits
of nodes associated with the unit cell, shown as A ,i j, where

i p1 ⩽ ⩽ and j n1 .⩽ ⩽ These orbits of nodes are listed in
the following matrix:

Figure 16. The folding process of a cardboard model of the fold pattern depicted in the previous figure [13].
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As in every pmg symmetry group, there is a degree of
freedom for the aspect ratio of the unit cell. The first
p 1− rows of nodes in the matrix are generic nodes, in which
there are two degrees of freedom for each node, providing
us with n p2 ( 1)− degrees of freedom. The pth row contains
merely mirror nodes, each of them having one degree
of freedom, giving us n degrees of freedom. In total,
the number of degrees of freedom of the pattern is as
follows:

n p

n n p

Number of DOFs 1 2 ( 1)

(2 1) 1.

Aspect ratio
Generic nodes

Mirror nodes

  

⏟
⏟

= + −

+ = − +

Noting that there are n p( 1)− flat-foldability equations
associated with the n p( 1)− generic nodes in the pattern, we

conclude:

n p n p np
Number of DOFs number of equations

( (2 1) 1) ( 1) 1.
−

= − + − − = +

Although increasing the size of the unit cell provides us
with more degrees of freedom to make design variations on
the original pattern, it decreases the number of constraints on
a typical quadrilateral within the pattern, making variations
with larger m and n less interesting from a symmetry
viewpoint.

Figure 15 depicts a pmg6,3 variation of the Miura-ori
which consists of four distinct starting quadrilaterals as well
as a single starting parallelogram. The folding process of this
pattern is represented in figure 16 using a cardboard model.

We have shown that, in a pmgm,n variation of the Miura-
ori, where m = 2(2p—1), the following statements are valid (p
and q are natural numbers).

Figure 17. An example for a flat-foldable pmg+6,4 variation of the Miura-ori. It consists of five different starting convex quadrilaterals, shown
as Q1, Q2, Q3, Q4 and Q5, as well as two different parallelograms P1 and P2. Solid lines show mountain fold lines, while dashed lines
represent valley fold lines.
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• If n is even, i.e. n= 2q, there are q(2p − 1) distinct convex
quadrilaterals in the fold pattern. In the case m = 2, i.e.
p= 1, all the convex quadrilaterals must be trapezoids.

• If n is odd, i.e. n= 2q− 1, there are q(2p− 1)−p distinct
convex quadrilaterals in the fold pattern in addition to a
single parallelogram. In the case m= 2, i.e. p= 1, all the
convex quadrilaterals must be trapezoids. In the case
m = 2, i.e. p= 1, and n= 1, i.e. q= 1, the pattern is the
Miura-ori which consists of a single parallelogram.

Starting from the alternative standard unit cell, S+, illu-
strated in figure 1, we study the alternative m × n isomorphic
variation of the Miura-ori, where m p2(2 1),= − and n and p
are natural numbers. As described earlier, for n odd, i.e.
n= 2q− 1, where q is a natural number, the pmg+m,n variation
of the Miura-ori is the same as the pmgm,n variation studied
earlier. In contrast, for n even, pmgm,n and pmg+m,n are dif-
ferent patterns.

A pmg+m,2q unit cell is presented in [10]. The details of the
degrees of freedom for pmg+m,2q are similar to the pmgm,2q
variation discussed earlier. We have shown that, in a pmg+m,n
variation of the Miura-ori, where m= 2(2p− 1), the following
statements are valid (p and q are natural numbers).

• If n is odd, i.e. n= 2q − 1, the pattern is the same as the
pmgm,n variation.

• If n is even, i.e. n= 2q, there are q(2p− 1)− 1 distinct
convex quadrilaterals in the fold pattern in addition to
two distinct parallelograms.

Figure 17 depicts a pmg+6,4 variation of the Miura-ori
which consists of five distinct starting quadrilaterals as well as
two distinct starting parallelograms.

3. Conclusions

Starting with the Miura fold pattern which is a flat-foldable
pmg wallpaper pattern, we generalized the fold pattern by
systematic unit cell enlargements, while at the same time pre-
serving the wallpaper group. We designed and developed flat-
foldable isomorphic symmetric descendants for the Miura-ori

with a variety of quadrilateral facets, which are either globally
planar, or globally curved, while the Miura-ori is a globally
planar pattern based on a single starting parallelogram facet.
Future research can go beyond generalizing the Miura-ori while
preserving its symmetry group, but may include variations of
this pattern which have different symmetry groups.

References

[1] Miura K 2006 The science of Miura-ori: a review 4OSME: 4th
Int. Conf. on Origami in Science, Mathematics, and
Education (Pasadena, CA)

[2] Hahn T 2005 International tables for crystallography vol A
Space-Group Symmetry (New York: Springer)

[3] Schwarzenberger R L E 1974 The 17 plane symmetry groups
Math. Gaz. 58 123–31

[4] Schattschneider D 1978 The plane symmetry groups: their
recognition and notation Am. Math. Mon. 85 439–50

[5] Tachi T 2009 Generalization of rigid-foldable quadrilateral-
mesh origami IASS: Proc. Int. Association for Shell and
Spatial Structures (Valencia, Spain)

[6] Sareh P and Guest S D 2012 Tessellating variations on the
Miura fold pattern IASS: Proc. Int. Association for Shell and
Spatial Structures (Seoul, South Korea)

[7] Sareh P and Guest S D 2015 A framework for the symmetric
generalisation of the Miura-ori Int. J. Space Struct., Spec.
Issue Folds Struct. at press

[8] Radaelli P G 2011 Symmetry in Crystallography:
Understanding the International Tables (Oxford: Oxford
University Press)

[9] Demaine E D and O’Rourke J 2007 Geometric Folding
Algorithms: Linkages, Origami, Polyhedra (Cambridge:
Cambridge University Press)

[10] Sareh P 2014 Symmetric descendants of the Miura-ori PhD
Dissertation Engineering Department, University of
Cambridge, UK

[11] Tachi T 2013 ‘Freeform Origami’ (online) (www.tsg.ne.jp/TT/
software/)

[12] Sareh P and Guest S D 2013 Minimal isomorphic symmetric
variations on the miura fold pattern Transformables 2013:
Proc. 1st Int. Conf. on Transformable Architecture (Seville,
Spain)

[13] Sareh P and Guest S D 2014 Designing symmetric derivatives
of the Miura-ori Advances in Architectural Geometry
(London: Springer)

12

Smart Mater. Struct. 24 (2015) 085001 P Sareh and S D Guest

http://dx.doi.org/10.2307/3617798
http://dx.doi.org/10.2307/3617798
http://dx.doi.org/10.2307/3617798
http://dx.doi.org/10.2307/2320063
http://dx.doi.org/10.2307/2320063
http://dx.doi.org/10.2307/2320063
http://www.tsg.ne.jp/TT/software/
http://www.tsg.ne.jp/TT/software/

	1. Introduction
	2. Isomorphic variations of the Miura-ori
	2.1. Minimal isomorphic symmetric variations
	2.2. Generalized isomorphic symmetric variations

	3. Conclusions
	References



